# Integrated Analog Front-End for Heart Rate Monitors and Low-Cost Pulse Oximeters

## **FEATURES**

- Fully-Integrated Analog Front-End for Pulse Oximeter Applications
- · Receiver:

High Accuracy Current to Frequency Converter up to 500kHz

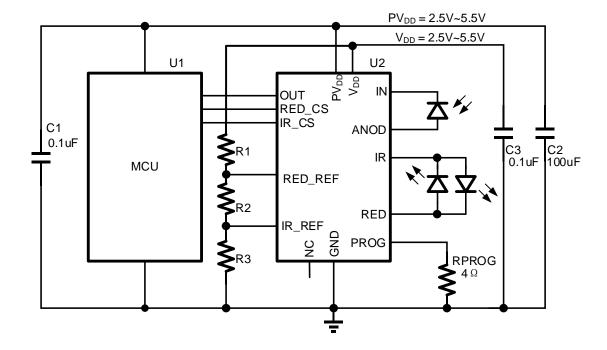
· Transmitter:

Flexible Pulse Sequencing and Timing Control with Integrated LED Driver (H-Bridge)
95dB Dynamic Range

LED Currents Programmable with an External Resistor and Analog Input Voltages

Power Supplies: 2.5V to 5.5V
 Low Power: 1.25mA at 3.3V Supply

• Specified Temperature Range: -40°C to +85°C


• Package: QFNWB3×3-16L

# **APPLICATIONS**

- Low-Cost Medical Pulse Oximeter Applications
- Optical HRM

#### PRODUCT DESCRIPTION

The TS9514 is a fully-integrated analog front-end (AFE) that is ideally suited for pulse oximeter applications. The device consists of a low-noise I/F converter and a LED transmitter section. The I/F converter converts photodiode current to frequency signal. The LED transmitter currents can be easily controlled through analog input voltages. The TS9514's flexibility allows users to have complete control of the device's timing characteristics. The TS9514 is an AFE solution in QFNWB3×3-16L package and is specified over the operating temperature from -40°C to +85°C.



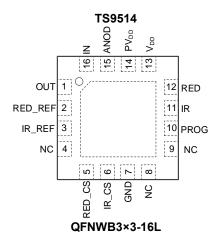
# ORDERING INFORMATION

| Product   | Package      | Package Option | Package Qty | Operating Temperature Range |
|-----------|--------------|----------------|-------------|-----------------------------|
| TS9514EQR | QFNWB3×3-16L | Tape and Reel  | 5000        | -40°C to +85°C              |

# **ABSOLUTE MAXIMUM RATINGS**

Over operating free-air temperature range (unless otherwise noted) (1)

| Parameter                             |                           | Value       | Unit |
|---------------------------------------|---------------------------|-------------|------|
| V <sub>DD</sub> to GND                |                           | 2.5 to 5.5  | V    |
| Input Current to Any Pin              | except Supply Pins        | ±10         | mA   |
| Innut Current                         | Momentary                 | ±50         | mA   |
| Input Current                         | Continuous                | ±10         | mA   |
| Operating Temperature F               | Range                     | -40 to +85  | °C   |
| Storage Temperature Ra                | nge                       | -65 to +150 | °C   |
| Maximum Junction Temp                 | perature, TJ              | +125        | °C   |
|                                       | Human Body Model (HBM)    | ±2000       | V    |
| Electrostatic Discharge (ESD) Ratings | Machine Model (MM)        | ±200        | V    |
| , ,                                   | Charge Device Model (CDM) | ±500        | V    |


<sup>(1)</sup> Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **ESD CAUTION**



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# **PIN CONFIGURATION**



**Table 1. PIN DESCRIPTIONS** 

| NO.   | Name             | Function | Description                                                     |
|-------|------------------|----------|-----------------------------------------------------------------|
| 1     | OUT              | Output   | Frequency Output                                                |
| 2     | RED_REF          | Input    | RED LED Driver Reference Voltage Input                          |
| 3     | IR_REF           | Input    | IR LED Driver Reference Voltage Input                           |
| 4,8,9 | NC               | Input    | No Connection Pin                                               |
| 5     | RED_CS           | Input    | RED LED Control Input. High Active                              |
| 6     | IR_CS            | Input    | IR LED Control Input. High Active                               |
| 7     | GND              | Supply   | Supply Ground Pin                                               |
| 10    | PROG             | I/O      | LED driver current program pin, connect a resistor to this pin. |
| 12    | RED              | Output   | RED LED Drive Output                                            |
| 11    | IR               | Output   | IR LED Drive Output                                             |
| 14    | PV <sub>DD</sub> | Supply   | LED Driver Power Supply Pin                                     |
| 13    | V <sub>DD</sub>  | Supply   | Power Supply Pin                                                |
| 15    | ANOD             | Input    | Current Input, Connect to PIN Diode Anode                       |
| 16    | IN               | Input    | Current Input, Connect to PIN Diode Cathode                     |

REV KY1.2.6 3 www.trusignal.com



# **ELECTRICAL CHARACTERISTICS**

Minimum and maximum specification are at  $T_A$  = -40°C to +85°C. Typical specifications are at +25°C. All specifications are at  $V_{DD}$  = 3.3V (unless otherwise noticed)

| Parameter        |                                                    | Test Conditions                                                            | Min               | Тур        | Max               | Unit              |
|------------------|----------------------------------------------------|----------------------------------------------------------------------------|-------------------|------------|-------------------|-------------------|
| Performa         | nce (Full-Signal Chain)                            |                                                                            |                   |            |                   | l                 |
| $V_{DD}$         | Receiver Supply Voltage                            | $T_A = 0^{\circ}C$ to +85°C<br>$T_A = -40^{\circ}C$ to +85°C               | 2.5<br><b>2.7</b> |            | 5.5<br><b>5.5</b> | V                 |
| PV <sub>DD</sub> | LED Driver Supply Voltage (2)                      |                                                                            | 2.5               |            | 5.5               | V                 |
| I <sub>DD</sub>  | Supply Current                                     | $T_A = 25^{\circ}C, V_{DD} = 5.5V$                                         |                   | 1.25       | 1.7               | mA                |
| PRF              | Pulse Repetition Frequency                         |                                                                            |                   |            | 1000              | SPS               |
| I-F Transi       | mpedance Amplifier                                 |                                                                            |                   |            |                   |                   |
| fo               | Output Frequency Full-Scale Frequency Nonlinearity | $I_{IN} = 1uA$ $f_O = 0 \text{ to } 100kHz$                                | 500               | 100<br>±1% | 1000              | kHz<br>kHz<br>%FS |
| Re               | Current Responsivity                               |                                                                            |                   | 100        |                   | kHz/μA            |
| PSRR             | Power-Supply Rejection Ratio                       | f <sub>0</sub> = 100kHz                                                    |                   | 0.3        |                   | %/V               |
| Transmitt        | er                                                 |                                                                            |                   |            |                   | 1                 |
|                  | Full-Scale Output Current (2)                      | $T_A = 25$ °C, $V_{DD} = 5V$ , $R_{PROG} = 4\Omega$ ; $V_{CONTROL} = 0.8V$ |                   | 200        |                   | mA                |
| VCONTROL         | Analog Input Voltage                               |                                                                            | 0                 |            | VDD - 2           | V                 |
|                  | Output Current Offset                              | $V_{DD} = 5V$ , $R_{PROG} = 4\Omega$                                       |                   | 0.25       | 1.25              | mA                |
|                  | Transmitter Noise Dynamic                          | At 5mA Output Current                                                      |                   | TBD        |                   | dB                |
|                  | Range, Over 0.1Hz to 5Hz Bandwidth                 | At 25mA Output Current                                                     |                   | TBD        |                   | dB                |
|                  | Dandwidth                                          | At 50mA Output Current                                                     |                   | TBD        |                   | dB                |
|                  | Minimum on Time of LEDs                            |                                                                            |                   | 50         |                   | μs                |
|                  | LED Current Linearity vs<br>Analog Input Voltage   | Percent of Full-Scale Current                                              |                   | 1%         |                   |                   |
|                  | Outrout Commant Cattling Times                     | From 0 to 50mA                                                             |                   | TBD        |                   | μs                |
|                  | Output Current Settling Time                       | From 50mA to 0                                                             |                   | TBD        |                   | μs                |
| Temperat         | ure                                                |                                                                            |                   |            |                   |                   |
|                  | Specified Temperature Range                        |                                                                            | -40               |            | +85               | °C                |
|                  | Storage Temperature Range                          |                                                                            | -65               |            | +150              | °C                |

<sup>(2)</sup> The Maximum LED output current depends on PV<sub>DD</sub>, R<sub>PROG</sub> resistance and LED forward voltage strongly; it can be smaller than the full-scale current.

REV KY1.2.6 4 www.trusignal.com

## **OVERVIEW**

The TS9514 is a complete analog front-end (AFE) circuit targeting pulse oximeter applications. The device consists of a low-noise I/F converter and a LED transmitter section. The I/F converter converts the photodiode current to frequency signal precisely. The output of the device connects directly to a high resolution timer of the external microcontroller (MCU) for which an A/D converter is not necessary. The LED transmitter current can be adjusted through analog input voltages.

#### **RECEIVER**

The receiver consists of a high precision current-tofrequency (I/F) converter section. The I/F converter converts the photodiode current to frequency signal with high dynamic range and linearity. The converter continuously converts input current to frequency without being interrupted by the LED control signals.

## TRANSMITTER SECTION

The transmitter section integrates a voltage controlled constant current source, an H-bridge LED driver and its control logic. Two LED driver schemes are supported: an H-bridge drive for a two-terminal back-to-back LED package and a push-pull drive for a three-terminal LED package. The on-off of the LED current is controlled by logic signals at the input pins of RED\_CS and IR\_CS, and each LED current can be adjusted by the corresponding analog input voltage independently. An external resistor RPROG at the PROG pin sets the ratio of the input voltage to the LED current and the maximum output current is primarily dependent on RPROG, the power supply voltage PVDD, and the forward voltage of the LEDs.

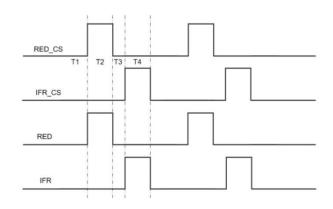



Figure 1. Timing of LED Control.

#### LED CURRENT CONTROL

The output currents of the transmitter are controlled by the analog input voltages and are given by the following equation:

$$I_{LED} = \frac{V_{REF}}{R_{PROG}}$$

where  $V_{\text{REF}}$  is the voltage at RED\_REF or IR\_REF pin. The voltages at RED\_REF pin and IR\_REF pin control the RED LED current and IR LED current respectively and independently.

#### TIMING DIAGRAM OF THE TRANSMITTER

Figure 1 shows the timing diagram for the LED transmitter control. Through the internal logic, signals at the RED\_CS and IR\_CS pins control the switches of the H-Bridge. In T1 and T3 cycles, both LEDs are turned off. In T2 and T4 cycles, RED LED and IR LED are turned on respectively. Both of the RED\_CS and IR\_CS pins are active 'high', however, when both are high at the same time, there will be no current flow through the two-terminal back-to-back packaged LEDs (see Table 2 and Table 3).

Table 2. Transmitter True Table (Two-Terminal Back-to-Back Packaged LEDs)

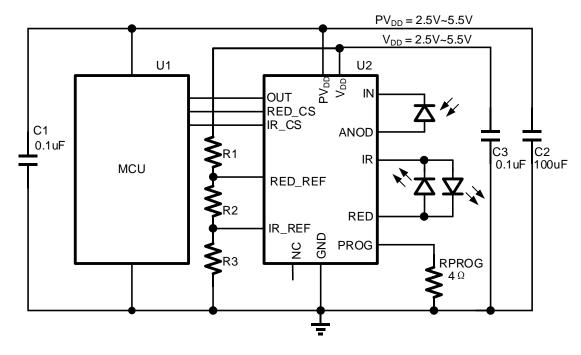
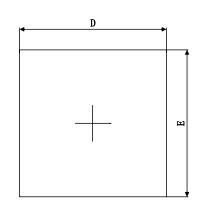
| Inp    | outs  | Outputs |    |              |             |  |  |  |
|--------|-------|---------|----|--------------|-------------|--|--|--|
| RED_CS | IR_CS | RED     | IR | RED Transmit | IR Transmit |  |  |  |
| 0      | 0     | Z       | Z  | OFF          | OFF         |  |  |  |
| 1      | 0     | Н       | L  | ON           | OFF         |  |  |  |
| 0      | 1     | L       | Н  | OFF          | ON          |  |  |  |
| 1      | 1     | Н       | Н  | OFF          | OFF         |  |  |  |

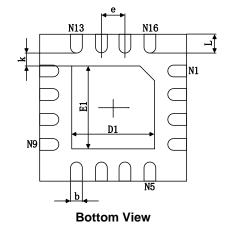
**Table 3. Timing Requirements** 

|                     | Parameter                                          | Min | Тур | Max | Unit |
|---------------------|----------------------------------------------------|-----|-----|-----|------|
| t <sub>RED_CS</sub> | Red LED on Time, Active High                       | 50  |     |     | μS   |
| t <sub>IR_CS</sub>  | Infrared LED on Time, Active High                  | 50  |     |     | μS   |
| tint                | The Time Interval between Red LED on and IR LED on | 50  |     |     | μS   |

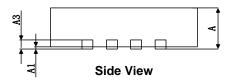
# **APPLICATION EXAMPLES**

Figure 2 show the typical application circuit of TS9514 as an analog front-end for Pulse Oximeters. Please note that the pins of RED and IR and pins of  $V_{DD}$  and  $PV_{DD}$  are interchanged between the two packages.



Figure 2. Typical Application of TS9514

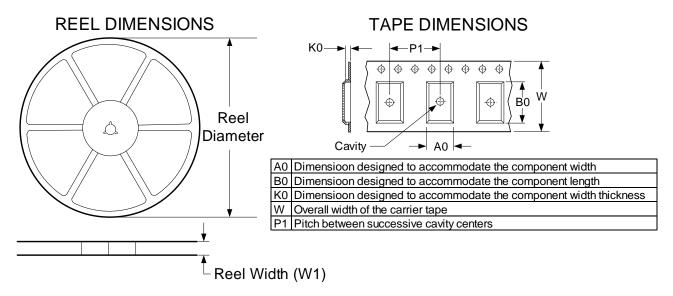
REV KY1.2.6 7 www.trusignal.com


# **MECHANICAL DIMENSIONS**

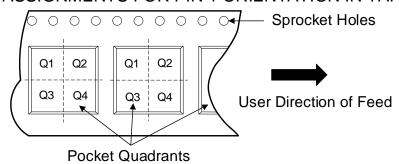
## QFNWB3×3-16L PACKAGE MECHANICAL DRAWING











# QFNWB3×3-16L PACKAGE MECHANICAL DATA

|        | dimensions  |        |          |       |  |  |  |  |
|--------|-------------|--------|----------|-------|--|--|--|--|
| symbol | millir      | neters | inches   |       |  |  |  |  |
|        | min         | max    | min      | max   |  |  |  |  |
| Α      | 0.700       | 0.800  | 0.028    | 0.031 |  |  |  |  |
| A1     | 0           | 0.050  | 0        | 0.002 |  |  |  |  |
| A3     | 0.20        | 3REF   | 0.008REF |       |  |  |  |  |
| D      | 2.900       | 3.100  | 0.114    | 0.122 |  |  |  |  |
| Е      | 2.900       | 3.100  | 0.114    | 0.122 |  |  |  |  |
| D1     | 1.600       | 1.800  | 0.063    | 0.071 |  |  |  |  |
| E1     | 1.600       | 1.800  | 0.063    | 0.071 |  |  |  |  |
| k      | 0.20        | 0MIN   | 0.008    | 8MIN  |  |  |  |  |
| b      | 0.180       | 0.300  | 0.007    | 0.012 |  |  |  |  |
| е      | 0.50        | 0TYP   | 0.02     | TYP   |  |  |  |  |
| L      | 0.300 0.500 |        | 0.012    | 0.020 |  |  |  |  |

# TAPE AND REEL INFORMATION



# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| Device               | Package<br>Type | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|----------------------|-----------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TS9514EQRQFNWB3316LR | QFNWB3×3-16L    | 16   | 5000 | 330.0                    | 12.4                     | 6.4        | 5.4        | 2.1        | 8.0        | 12.0      | Q1               |

REV KY1.2.6 9 www.trusignal.com

# **TS9514**

# Trusignal Microelectronics

# **REVISION HISTORY**

NOTE: Page numbers for previous revisions may be different from that of the current version.

| 2020/6/18 — REV KY1.0.4 to REV KY1.0.5  |    |
|-----------------------------------------|----|
| Changes Figure 2                        | 7  |
| Changes Figure 3                        |    |
| 2020/8/21 — REV KY1.0.5 to REV KY1.1.5  |    |
| Changed to Figure 2 Deleted Figure 3    | 1  |
| Deleted Figure 3                        | 7  |
| 2020/11/23 — REV KY1.1.5 to REV KY1.1.6 |    |
| Deleted package TSSOP16                 | 12 |
| 2022/5/9 — REV KY1.1.6 to REV KY1.2.6   |    |

Changed to QFNWB3×3-16L PACKAGE MECHANICAL DATA......8

# **CONTACT INFORMATION**

Trusignal Microelectronics Phone: +86 512-65923982 Fax: +86 512-65923995

Email: support@kunyuanic.com; sales@kunyuanic.com