Single-Channel Low-Side Driver IC with OCP

FEATURES

- Over-current detection with negative voltage input
- Over-current threshold accuracy at 25℃: ±6%(±15mV)
- Single pin for fault output and enable
- Programmable fault clear time
- Under voltage lockout for IGBTs
- CMOS Schmitt-triggered inputs
- 3.3V, 5V and 15V input logic compatible
- 20V V_{CC} voltage supply support (max)
- Output in phase with input
- Leadfree, RoHS Compliant

APPLICATIONS

- Digitally controlled PFC
- Home appliances
- Air conditioner
- Industrial applications

TYPICAL APPLICATION

• General purpose low-side gate driver for single-ended topologies

PRODUCT DESCRIPTION

The TS6201 is a low-voltage, power IGBT, noninverting gate driver. The logic input is compatible with standard CMOS or LSTTL output. The TS6201 has OCP pin for over current protection sense and a FAULT status output (when activivated, EN/FLT pin is internally pulled down). The EN/FLT needs to be externally pulled up to provide normal operation, pulling EN/FLT low disable the driver. Internal circuitry on VCC pin provides an under voltage lockout protection that holds output low until Vcc supply voltage is within operating range.

PIN ASSIGNMENTS

SOT-23-6L

ORDERING INFORMATION

Model	Part Number	Eco Plan	Package	Container, Pack Qty			
TS6201	TS6201SOT236L	RoHS	SOT-23-6L	Reel, 3000			

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

Parameter	Min	Max	Unit		
Supply Voltage	-0.3	25	V		
Input Voltage	-10	Vcc+0.3	V		
Output Voltage	-0.3	Vcc+0.3	V		
Voltage at current sense pin (OCP)	-10	Vcc+0.3	V		
Voltage at enable and fault reporting pin (EN/FLT)	-0.3	V _{CC} +0.3	V		
Junction Temperature	-40	150	°C		
Storage Temperature Range	-65	150	°C		
Lead Temperature (Soldering, 10s)		260	°C		
ESD HBM	±6000V				
ESD MM	±600V				
ESC CDM	±1500V				
IC Latch-Up Test at Room Temperature	±600mA @25℃				

(1) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Min	Мах	Unit
Supply Voltage	12	20	V
Input Voltage	-5	Vcc	V
Output Voltage	СОМ	Vcc	V
Voltage at current sense pin (OCP)	-5	Vcc	V
Voltage at enable and fault reporting pin (EN/FLT)	0	Vcc	V
Ambient temperature	-40	125	°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

Pin No	Symbol	Function
1	OCP	Current sense input
2	СОМ	Ground
3	OUT	Gate drive output
4	VCC	Supply Voltage
5	EN/FLT	 Enable, fault reporting and fault clear time program pin, three functions: 1. Logic input to enable I/O functionality. I/O logic functions when ENABLE is high. 2. Fault reporting function like over-current or undervoltage lockout, this pin has negative logic and an open-drain output. 3. Fault clear time program with external resistor and capacitor.
6	IN	Logic input for gate driver output (OUT), in phase

INPUT/OUTPUT LOGIC TRUTH TABLE

IN	UVLO	OCP	EN/FLT	OUT	Note
L	Н	L	Н	L	OUT=L
Н	Н	L	Н	Н	OUT=H
х	L	Х	L	L	OUT = L, EN/FLT = L, (UVLO protection will disable input signals until EN/FLT returns to high level.)
х	н	н	L	L	OUT = L, EN/FLT = L, (Over current protection will disable input signals until EN/FLT returns to high level.)
х	н	х	L	L	OUT = L (Externally pull down EN/FLT pin will disable I/O logic until EN/FLT returns to high level.)

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$, $C_L = 1 \text{ nF}$ and $V_{CC} = 15V$ (unless otherwise noted)

Parameter		Operating Conditions	Min	Тур	Max	Unit
Power Sup	ply	l				
l _Q	Quiescent Supply Current	$V_{\text{IN}} = 0V/5V, V_{\text{OCP}} = 0V, V_{\text{EN/FLT}} = NC, V_{\text{OUT}} = NC$		240	400	μ A
$V_{\text{CC}_\text{Clamp}}$	V _{CC} Zener Clamp Voltage ⁽²⁾	$I_Q = 1mA$		27		V
V _{UVLO+}	V _{cc} undervoltage Lockout Exit		10.7	11.4	12.2	V
V _{UVLO-}	V _{CC} undervoltage Lockout Enter		9.8	10.5	11.3	V
V _{UVLO HYST}	V _{cc} undervoltage lockout hysteresis			0.9		V
Input Cha	racteristics					
V _{INH}	Logic "1" Input Voltage		2.5			V
V _{INL}	Logic "0" Input Voltage				0.8	V
I _{INH}	Logic "1" Input Current	V _{IN} = 5V	30	50	70	uA
I _{INL}	Logic "0" Input Current	V _{IN} = 0V		0		uA
V _{ENH}	Logic "1" enable voltage		2.5			V
V _{ENL}	Logic "0" disable voltage				0.8	V
V _{OCPTH}	Current limit threshold voltage		-265	-250	-235	mV
Output Cl	naracteristics		1		r	
V _{OH}	High level output voltage, V_{CC} -V _{OUT}	I _{OUT} = 2mA		10	100	mV
V _{OL}	Low level output voltage, V _{OUT}	I _{OUT} = -2mA		10	100	mV
I _{O+}	Output sourcing short circuit pulsed current ⁽²⁾	$V_{IN} = 5V, V_{OUT} = 0V(Pulse Width \le 2 \mu s)$		1.5		А
I ₀ .	Output sinking short circuit pulsed current ⁽²⁾	$V_{IN} = 0V, V_{OUT} = 15V$ (Pulse Width $\leq 2 \mu s$)		1.5		Α
I _{FLT}	EN/FLT pull down sinking current	V _{EN/FLT} =0.4V	10			mA
VACTSD	Active shut down voltage	V _{CC} =NC,I _{OUT} =I _{O-} *0.1(150mA)		3.5		V
Time Cha	racteristics					
t _{on}	Turn-on propagation delay			40	70	ns
t _{off}	Turn-off propagation delay	$(-p_{1})(p_{2})(p_{3})(p_{3})$		40	70	ns
t _r	Output rise time	$v_{\rm IN}$ pulse=5 $v(t_{\rm r}<5005, t_{\rm f}<5005)$		10	20	ns
t _f	Output fall time			10	20	ns
t _{DISA}	Disable propagation delay	V _{EN/FLT} pulse=5V		50	75	ns
t _{OCPDEL}	Over current protection propagation delay	V _{OCP} pulse = -0.5V		260	350	ns
t _{OCPFLT}	OCP to low level EN/FLT signal delay	$R_{\text{EN/FLT}}{=}10 k\Omega$ to 3.3V, V_{OCP} pulse = -0.5V		230	320	ns
t _{FLTC}	FAULT clear time	$R_{\text{EN/FLT}}\text{=}1M\Omega$ to 3.3V, $C_{\text{EN/FLT}}\text{=}150\text{pF}$ to COM	80	103	130	μs
t _{BLK}	Over current protection blanking time (2)	V_{OCP} pulse = -0.5V		120		ns
tv _{CCUV}	V_{CC} supply UVLO filter time $^{(2)}$			2.4		us

(2) Parameter verified by design, not tested in production.

TYPICAL CHARACTERISTICS

At $T_A = +25^{\circ}$ C, $C_L = 1 \text{ nF}$ and $V_{CC} = 15V$ (unless otherwise noted)

Trusignal Microelectronics

TYPICAL CHARACTERISTICS (CONTINUE)

At $T_A = +25$ °C, $C_L = 1$ nF and $V_{CC} = 15V$ (unless otherwise noted)

APPLICATION NOTES & ADDITIONAL DETAILS

• Switching and Timing Relationships

The relationship between the input and output of the product is shown in Figure 1. It is also shown on the figure the definition of timing parameters including ton, toff, tr, and tf.

Figure 1. Switching Time Waveform Definitions

The test circuit for the timing parameters is shown in Figure 2. The capacitor on the power supply should be placed as close as possible to the power pin, to prevent the power supply voltage from being pulled down during output switching.

Figure 2. Test Circuit for Switching Time

• Input Logic Compatibility

The input voltage of this product is compatible with TTL and CMOS levels. Input hysteresis offers enhanced noise immunity. The built-in 100k ohm pull-down resistor puts the output low when the input pin is floating. Figure 3 illustrates the relationship between input voltage and input logic.

APPLICATION NOTES & ADDITIONAL DETAILS(CONTINUE)

Undervoltage Lockout

The product has a built-in UVLO function. When the power supply voltage is lower than V_{UVLO} , the output will remain low regardless of the input state. When the power supply voltage exceeds the V_{UVLO+} , the output pin will continue to maintain the low level, and the output will not change with the input until the input pin has a rising edge. Figure 4 shows the above function.

Figure 4. Vs Under Voltage Protection Waveform Definitions

The circuit includes a deglitch filter with about 2µs delay that can effectively avoid mis-trigger events. Figure 6 shows the implementation principle of the internal filter circuit.

Figure 5. Block Diagram of UVLO Filter Circuit

Figure 6. Delay Time of UVLO Filter

APPLICATION NOTES & ADDITIONAL DETAILS(CONTINUE)

• Vs Voltage Clamp

The internal power supply pin V_s of the product is integrated with a voltage clamping function, which can protect the power transistor inside the chip in case of transient overvoltage on the power supply. Figure 7 shows the output waveforms with and without this function.

Active Shutdown

The active shutdown function is a protection feature of the driver. It is designed to avoid a free floating gate of a connected power switch to false trigger a turn on. In case of supply voltage failure at the V_S pin, the output section of the driver operates in the active shutdown mode. In this case the driver uses the floating voltage of the connected gate to supply this internal circuit. This solution is by far stronger than an otherwise used R_{GS}.

Figure 8. Block Diagram of Active Shutdown Circuit

• Typical Application of PFC

Figure 9 shows the typical application of TS6201 when used as a gate driver for the power MOSFET in a boostconverter application (for example, AC-DC power factor correction in offline chargers for electric vehicles). Since the output pin of the product is integrated with the *Active Shut Down* function, and the power transistor will remain off when power is cut off. Thus, the pull-down resistor in the figure is optional.

Trusignal Microelectronics

• Over current protection (OCP)

The TS6201 has a function of over current protection with a threshold V_{OCPTH} at the OCP pin input. The voltage at this pin is the negative voltage drop sensed across the system current sense resistor. It is up to minus 10 V_{DC} negative input capability of OCP pin. To avoid false tripping due to the fast high current switch on transient that occurs at the switch on of IGBT resulting from the circuit parasitic capacitors, there is a blanking interval which disables over current detection for the period of t_{BLK} (Additional RC filter is recommended, if internal t_{BLK} is not enough in the very noisy circuit.). After t_{BLK} and the voltage of OCP pin is over V_{OCPTH} , the TS6201 causes fault logic to initiate a fault shutdown sequence. This sequence starts with the generation of a fault signal and internal MOSFET Q_{FLT} is turned on and EN/FLT pin is pulled down.

At the same time the TS6201 terminates the present cycle, and the gate output is immediately pulled down with internal propagation delay (t_{OCPDEL}), see the Figure 10 and Figure 11.

Figure 9 is the diagram of TS6201 in boost application. And Figure 10 is the typical waveforms of the application. If the OCP fault condition is removed, the internal pull down NMOS of EN/FLT is released and EN/FLT will be pull up again with V_{dd} , but the output still keeps low until the next input signal IN is high.

Figure 10. TS6201 in Boost Application

Figure 11. OCP Fault Detection and Fault Clear Waveforms One

• Fault reporting and programmable fault clear timer

The TS6201 provides an integrated fault reporting output and an adjustable fault clear timer. There are two situations that would cause the driver to report a fault via the EN/FLT pin. The first is an under voltage condition of V_{CC} and the second is if the OCP pin recognizes a fault. Once the fault condition occurs, the EN/FLT pin is internally pulled to COM. The EN/FLT output stays in the low state until the fault condition has been removed and the internal pull down NMOS Q_{FLT} turns off, the voltage on the EN/FLT pin is charged up with external pull-up voltage.

The length of the fault clear time period (t_{FLTC}) is determined by exponential charging characteristics of the capacitor where the time constant is set by R_{FLTC} and C_{FLTC} . Figure 10 shows that R_{FLTC} is connected between the external supply (V_{DD}) and the EN/FLT pin, while C_{FLTC} is placed between the EN/FLT and COM pins. EN/FLT is weakly pulled up to 3.3 V reference voltage with 2.15M resistor internally. So the length of the fault clear time period can be determined by using the formula below (If V_{DD} = 3.3 V).

$$t_{FLTC} = -\left(\frac{R_{FLTC} \times 2.15M}{R_{FLTC} + 2.15M}\right) \times C_{FLTC} \times \ln(1 - \frac{V_{ENH}}{V_{DD}})$$

• Enable input

TS6201 provides an enable functionality that allows to shutdown or to enable the output. When EN/FLT is pulled up (the enable voltage is higher than V_{ENH}) the output is able to operate normally, pulling EN/FLT low (the enable voltage is lower than V_{ENL}) the output is disable. The relationships between the input, output and enable signals of the TS6201 are illustrated below in Figure 12~14. From these figures, we can see the definitions of several timing parameters and threshold voltages (i.e. t_{DISA} , V_{ENH} and V_{ENL}) associated with this device.

Figure 12. Input/Output/Enable Pins Timing Diagram

Figure 13. EN Pin Switching Time Waveform

Figure 14. EN Input Thresholds

MECHANICAL DIMENSIONS

SOT-23-6L PACKAGE MECHANICAL DRAWING

SOT-23-6L PACKAGE MECHANICAL DATA

	dimensions								
symbol	millin	neters	inches						
	min	max	min	max					
A	2.65	2.95	0.104	0.116					
A1	1.50 1.70		0.059	0.067					
В	2.82	3.02	0.111	0.119					
B1	0.	.95	0.037						
B2	0.30	0.50	0.012	0.020					
С		1.25		0.049					
C1	0.00	0.10	0.000	0.004					
L	0.30	0.60	0.012	0.024					
D	0.10	0.20	0.004	0.008					
θ	0°	8 °	0°	8 °					

TAPE AND REEL INFORMATION

Pocket Quadrants

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS6201SOT236L	SOT-23-6L	6	3000	180.0	9.0	3.2	3.3	1.4	4.0	8.0	Q3

REVISION HISTORY

NOTE: Page numbers for previous revisions may be different from that of the current version.

2023/12/22— REV KY0.0.0 TO REV KY1.0.0 Update parameters related to OCP

Update parameters related to OCP	all pages
2024/05/21— REV KY1.0.0 TO REV KY1.1.0	

Delete A Grade1	. 2		4、	13	3
-----------------	-----	--	----	----	---

CONTACT INFORMATION

Trusignal Microelectronics

Phone: +86 512-65923982 Fax: +86 512-65923995 Email: <u>support@kunyuanic.com;</u>