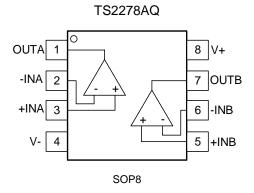
10MHz, Rail-to-Rail I/O CMOS Operational Amplifier

FEATURES

- AEC-Q100 qualified for automotive applications
- Low Offset Voltage: TS2278AQ-H: ±0.5mV (MAX) TS2278AQ: ±3.5mV(MAX)
- High Gain: 102dB (TYP)
- High Gain Bandwidth Product: 10MHz
- Rail-to-Rail Input/Output
- Low I_B: 1pA (TYP)
- Low Supply Voltage: +2.5V to +5.5V
- Low Power Consumption: 1.1mA at 5V (Per Amplifier)
- Extended Temperature: -40°C to +125°C

PRODUCT DESCRIPTION


The TS2278AQ families of products are low noise, low voltage and low power operational amplifiers with high gain-bandwidth product of 10MHz and slew rate of $10V/\mu s$. The maximum input offset voltage is only 0.5mV (TS2278AQ-H)and the input common mode range extends beyond the supply rails.

TS2278AQ families of operational amplifiers are specified at the full temperature range of -40°C to +125°C under single or dual power supplies of 2.7V to 5.5V, however these products will operate under an extended supply range from 2.5V to 5.5V at a reduced temperatures range.

APPLICATIONS

- Signal Conditioning
- Current Sensor Amplifier
- Battery-Powered Applications
- Portable Devices
- Active Filtering
- Weight Scale Sensor
- Medical/Industrial Instrumentation
- Power Converter/Inverter

PIN ASSIGNMENTS

ORDERING INFORMATION

Model	Part Number	Eco Plan	Package	AMP	Container, Pack Qty
TS2278AQ-H	TS2278AQHSOP8R	RoHS	SOP8	2	Reel, 2500
TS2278AQ	TS2278AQSOP8R	RoHS	SOP8	2	Reel, 2500

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Min	Max	Unit
Supply Voltage		7	V
Signal Input Terminal voltage	(V-) - 0.5	(V+) + 0.5	V
Operating Temperature	-40	150	°C
Junction Temperature		150	°C
Storage Temperature Range	-65	150	°C
Lead Temperature (Soldering, 10s)		260	°C
ESD HBM		±3000	V
ESD MM		±300	V
ESC CDM		±1000	V

⁽¹⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

REV KY1.0.0A 2 www.trusignal.com

ELECTRICAL CHARACTERISTICS: V_S = +2.7V to +5.5V

Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125°C.

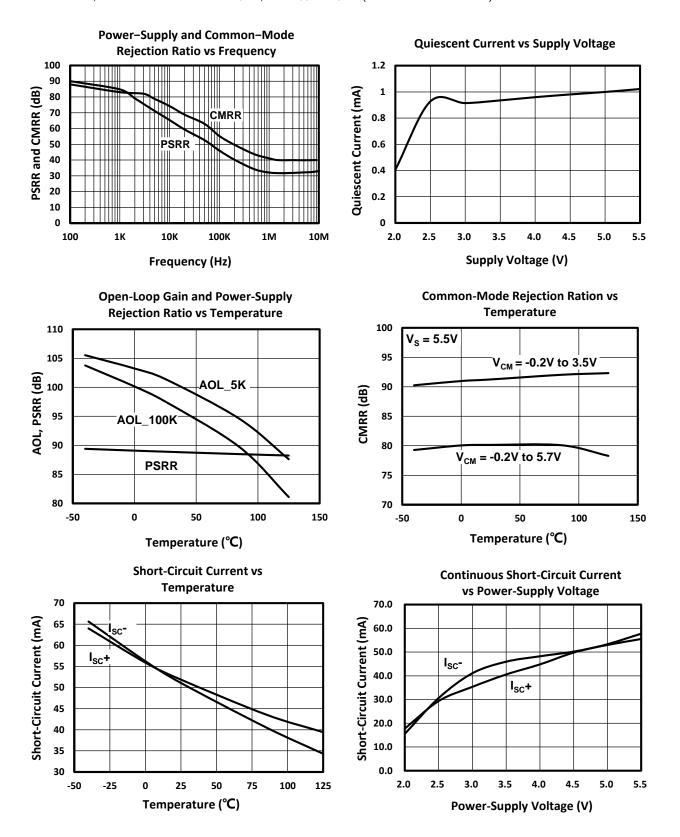
At $T_A = +25$ °C, $V_S = 5V$, $R_L = 10k\Omega$ connected to $V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

Parameter		Ol	Min	Тур	Max	Unit	
Vs	Power Supply Voltage			2.7		5.5	V
Is	Supply Current (Per Amplifer)			1.1	1.65	mA	
5055	D 0 1 D : # D #	V _S = 2	2.7V to 5.5V, V _{CM} < (V+) - 2V		30	125	μV/V
PSRR	Power Supply Rejection Ratio		T _A = -40°C to +125°C			150	μV/V
Input Ch	aracteristics						
M	Innut Offact Valtage		TS2278AQ-H	-0.5		0.5	mV
Vos	Input Offset Voltage		TS2278AQ	-3.5	1	3.5	mV
dV _{os} /dT	Average Drift				2.5		μV/°C
I _B	Input Bias Current				1		pА
Ios	Input Offset Current				1		pА
V _{CM}	Input Common Voltage Range		T _A = -40°C to +125°C	(V-) - 0.2		(V+) + 0.2	٧
			$(V-) - 0.2V < V_{CM} < (V+) - 2V$	76	90		dB
CMDD	Common Mode Rejection	V _S = 5.5V	T _A = -40°C to +125°C	68			dB
CMRR	Ratio		$(V-) - 0.2V < V_{CM} < (V+) + 0.2V$	62	78		dB
			T _A = −40°C to +125°C	60			dB
	0	(V-) + ($Vs = 5V, R_L = 5kΩ$ 0.125V < Vout < (V+) - 0.125V	96	102		dB
4.01			T _A = -40°C to +125°C	84			dB
AOL	Open-Loop Gain	$Vs = 5V, R_L = 100kΩ$ (V-) + 25mV < Vout < (V+) - 25mV		93	98		dB
			T _A = -40°C to +125°C	77			dB
Output C	Characteristics						
			$R_L = 100k\Omega$		18	25	mV
.,	Output Voltage Swing from		T _A = -40°C to +125°C			25	mV
V _{OUT}	Rail		$R_L = 5k\Omega$		100	125	mV
			T _A = -40°C to +125°C			125	mV
I _{OUT}	Output Current				±50		mA
R _{OUT}	Open-Loop Output Impedance		$f = 1MHz, I_O = 0mA$		40		Ω
Dynamic	Performance			!			
GBW	Gain Bandwidth Product				10		MHz
SR	Slew Rate	G = +1			10		V/µs
	Settling Time to 0.1%	V _{OUT} = 2V step, G = +1			1		μs
ts	Settling Time to 0.01%		$V_{OUT} = 2V \text{ step}, G = +1$		1.5		μs
	Overload Recovery Time		Vin * Gain > Vs		0.2		μs

REV KY1.0.0A 3 www.trusignal.com

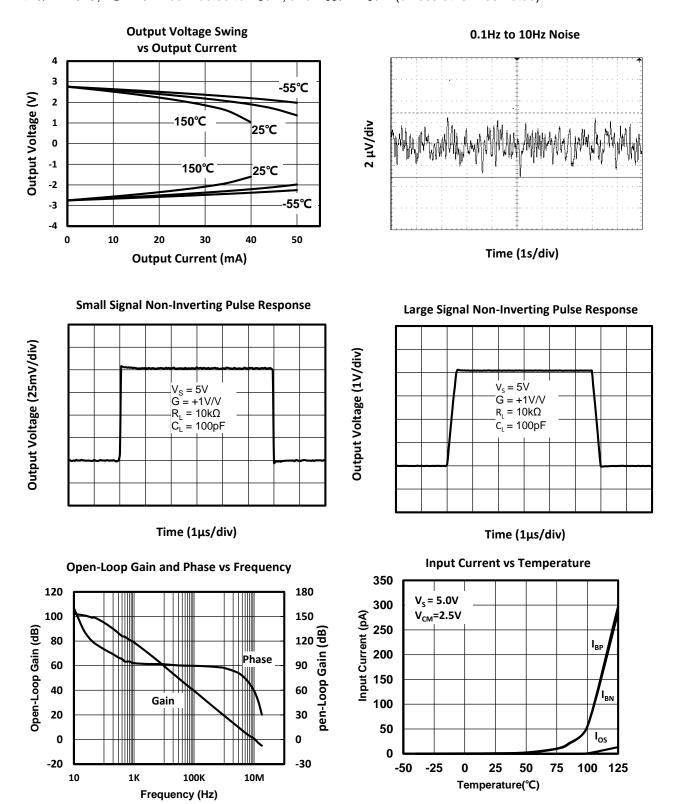
ELECTRICAL CHARACTERISTICS: $V_S = +2.7V$ to +5.5V (CONTINUE)

Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125°C.

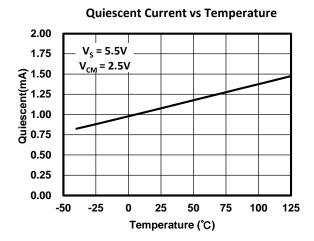

At $T_A = +25^{\circ}C$, $R_L = 10k\Omega$ connected to $V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

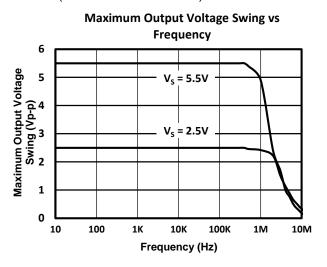
Parameter		Operating Conditions	Min	Туре	Max	Unit		
Noise Pe	Noise Performance							
i _n	Input Current Noise Density	f = 10kHz		4		fA/√Hz		
e _n	Input Voltage Noise Density	f = 10kHz		15		nV/√Hz		
V _{noise}	Input Voltage Noise	f = 0.1Hz to 10Hz		6		μVpp		
Tempera	Temperature Range							
	Specified Range		-40		+125	°C		
$ heta_{ m JA}$	Operating Range		-50		+150	°C		
	Storage Range		-65		+150	°C		
	Thermal Resistance							
	SOT-353			270		°C/W		
	SOP8, MSOP8			150		°C/W		

REV KY1.0.0A 4 www.trusignal.com


TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, $R_L = 10$ k Ω connected to V_S / 2, and $V_{OUT} = V_S$ / 2 (unless otherwise noted)


TYPICAL CHARACTERISTICS (CONTINUE)


At $T_A = +25$ °C, $R_L = 10$ k Ω connected to $V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

TYPICAL CHARACTERISTICS (CONTINUE)

At T_A = +25°C, R_L = 10k Ω connected to V_S / 2, and V_{OUT} = V_S / 2 (unless otherwise noted)

REV KY1.0.0A 7 www.trusignal.com

APPLICATION NOTES

The TS2177A and TS2178A families of op amps are suitable for a wide range of general-purpose applications. They provide Rail-to-rail input and output. Excellent ac performance makes them well-suited for audio and sensor applications. The input common-mode voltage range includes both rails, allowing the TS2177A and TS2178A families op amps to be used in bipolar and unipolar application. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Power-supply pins should be bypassed with $0.1\mu F$ ceramic capacitors.

POWER SUPPLY

The TS2177A and TS2178A families operate from a single +2.5V to +5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For single supply operation, bypass the power supply +Vs with a $0.1\mu F$ capacitor which should be placed close to the +Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

The TS2177A and TS2178A families are ideal for battery-powered instrumentation and handheld devices because it can operate at the end of discharge voltage of most popular batteries.

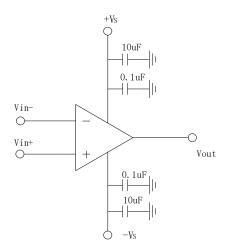


Figure 1. Amplifier with Bypass Capacitors

DRIVING CAPACITIVE LOADS

The TS2177A and TS2178A families can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this result in ringing or even oscillation. Applications

that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 2. The isolation resistor $R_{\rm ISO}$ and the load capacitor CL form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

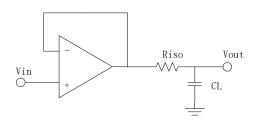


Figure 2. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 3. It provides DC accuracy as well as AC stability. Rf provides the DC accuracy by connecting the inverting signal with the output. Cf and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

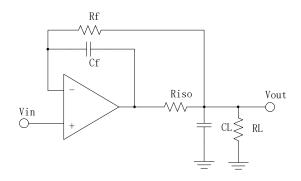


Figure 3. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

TYPICAL APPLICATIONS

Difference Amplifier

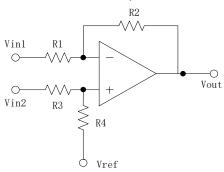


Figure 4. Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal (R4 / R3 = R2 / R1) then $Vout = (Vin2 - Vin1) \times R2 / R1 + Vref$.

Low Pass Active Filter

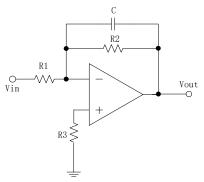
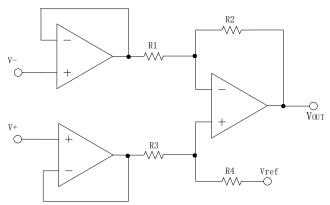
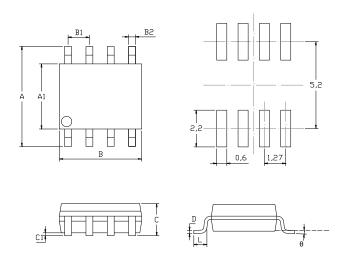


Figure 5. Low Pass Active Filter

The low pass filter shown in Figure 5 has a DC gain of (-R2 / R1) and the -3dB corner frequency is $1/2\pi R2C$. Make sure the filter within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

Instrumentation Amplifier



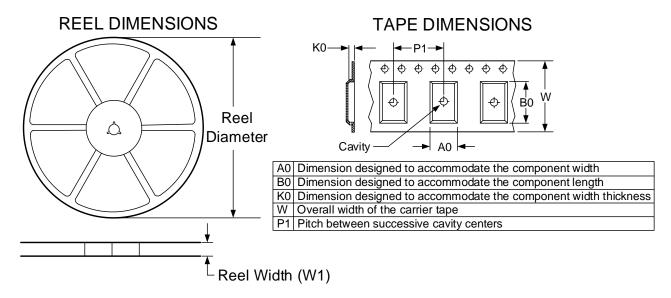

Figure 6. Instrumentation Amplifier

The circuit in Figure 6 performs the same function as that in Figure 4 but with the high input impedance.

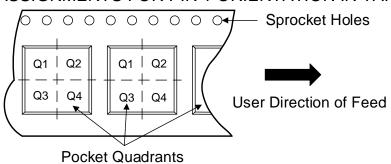
REV KY1.0.0A 9 www.trusignal.com

MECHANICAL DIMENSIONS

SOP8 PACKAGE MECHANICAL DRAWING



SOP8 PACKAGE MECHANICAL DATA


	dimensions								
symbol	millin	neters	inches						
	min	max	min	max					
Α	5.800	6.200	0.228	0.244					
A1	3.800 4.000		0.150	0.157					
В	4.700	5.100	5.100 0.185						
B1	1.2	270	0.050						
B2	0.330 0.510		0.013	0.020					
С		1.750		0.069					
C1	0.100	0.250	0.004	0.010					
L	0.400	1.270	0.016	0.050					
D	0.170	0.250	0.007	0.010					
θ	0° 8°		0°	8°					

REV KY1.0.0A 10 www.trusignal.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS2278AQHSOP8R	SOP8	8	2500	330.0	12.4	6.4	5.4	2.1	8.0	12.0	Q1
TS2278AQSOP8R	SOP8	8	2500	330.0	12.4	6.4	5.4	2.1	8.0	12.0	Q1

REV KY1.0.0A 11 www.trusignal.com

CONTACT INFORMATION

Trusignal Microelectronics

Phone: +86 512-65923982 **Fax:** +86 512-65923995

Email: support@kunyuanic.com; sales@kunyuanic.com;