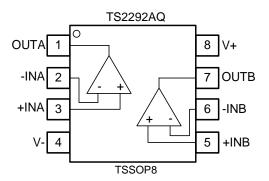
6.5MHz, Rail-to-Rail I/O CMOS Operational Amplifier

FEATURES

- AEC-Q100 qualified for automotive applications
- Low Offset Voltage: 3.5mV (MAX)
- High Gain: 105dB (TYP)
- High Gain Bandwidth Product: 6.5MHz
- Rail-to-Rail Input/Output
- Low I_B: 1pA (TYP)
- Low Supply Voltage: +2.5V to +5.5V
- Low Power Consumption: 580µA at 5V
- Extended Temperature: -40°C to +125°C

APPLICATIONS


- Signal Conditioning
- Current Sensor Amplifier
- Battery-Powered Applications
- Portable Devices
- Active Filtering
- Weight Scale Sensor
- Medical/Industrial Instrumentation
- Power Converter/Inverter

PRODUCT DESCRIPTION

The TS2192AQ of product is low noise, low voltage and low power operational amplifiers with high gain-bandwidth product of 6.5MHz and slew rate of $5V/\mu s$. The maximum input offset voltage is only 3.5mV and the input common mode range extends beyond the supply rails.

TS2292AQ of operational amplifiers are specified at the full temperature range of -40°C to +125°C under single or dual power supplies of 2.7V to 5.5V, however these products will operate under an extended supply range from 2.5V to 5.5V at a reduced temperatures range.

PIN ASSIGNMENTS

ORDERING INFORMATION

Model	Part Number	Eco Plan	Package	AMP	Container, Pack Qty		
TS2292AQ	TS2292ATSSOP8R	RoHS	TSSOP8	2	Reel, 4000		

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Min	Max	Unit
Supply Voltage		7	V
Signal Input Terminal Voltage	(V-) - 0.5	(V+) + 0.5	V
Operating Temperature	-50	150	°C
Junction Temperature		150	°C
Storage Temperature Range	-65	150	°C
Lead Temperature (Soldering, 10s)		260	°C
ESD HBM		±3000	V
ESD MM		±400	V
ESD CDM		±1000	V

⁽¹⁾ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

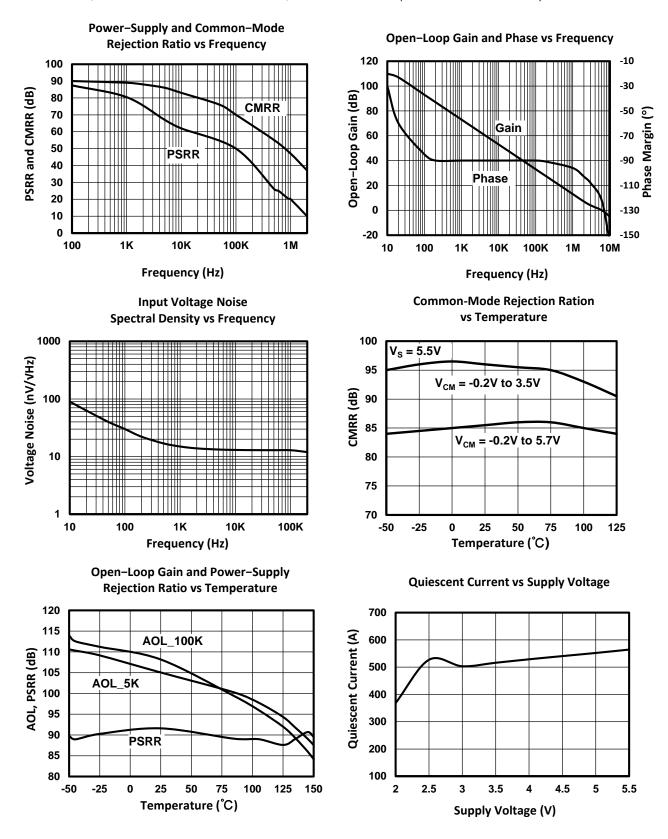
ESD CAUTION

ESD (electrostatic discharge) sensitive device

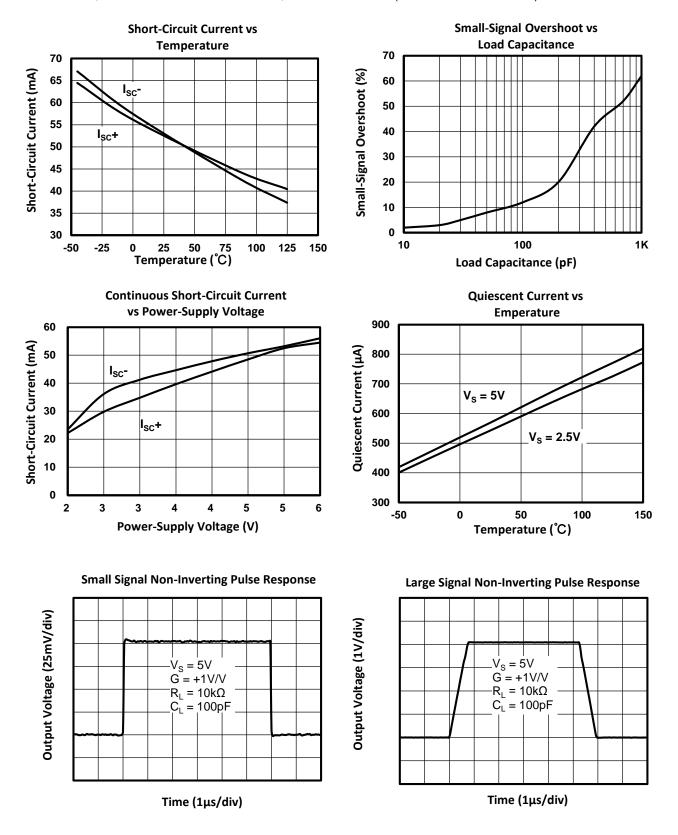
Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ELECTRICAL CHARACTERISTICS: V_S = +2.7V to +5.5V

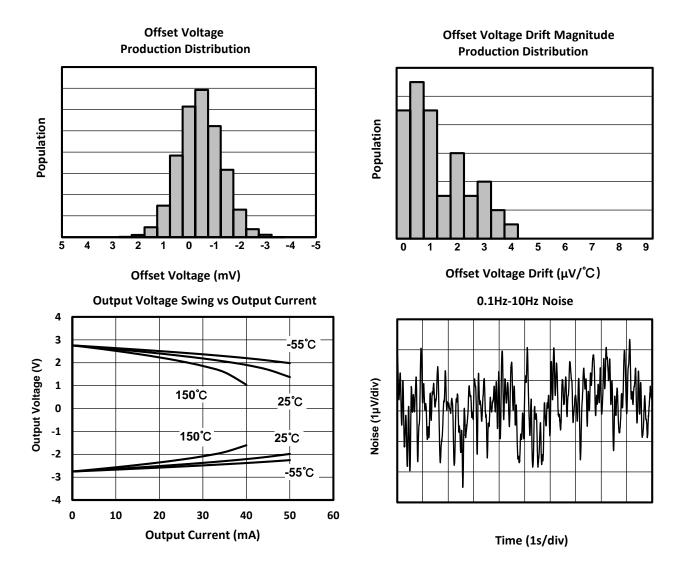
Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.


Parameter		Operating Conditions	Min	Тур	Max	Unit
Vs	Power Supply Voltage		2.7		5.5	V
V _{IN +/-}	Input Voltage Range		(V-) - 0.2		(V+) + 0.2	V
Is	Supply Current (Per Amplifer)	I _O = 0		580	750	μΑ
DCDD	Dawar Cumply Dejection Datio	$V_S = 2.7V \text{ to } 5.5V, V_{CM} < (V+) - 2V$		25	125	μV/V
PSRR Power Supply Rejection Ratio		T _A = -40°C to +125°C			150	μV/V
Input Ch	naracteristics					
Vos	Input Offset Voltage	V _S = 5.5V		1	3.5	mV
dV _{os} /dT	Average Drift			3		μ V /°C
I _B	Input Bias Current			1		pA
Ios	Input Offset Current			1		pА
		$(V-) - 0.2V < V_{CM} < (V+) - 2V$	76	88		dB
	Common Mode Rejection Ratio	T _A = -40°C to +125°C	68	72		dB
CMRR		$V_S = 5.5V,$ $(V-) - 0.2V < V_{CM} < (V+) + 0.2V$	64			dB
		T _A = -40°C to +125°C	58			dB
	Open-Loop Gain	$Vs = 5V, R_L = 5K\Omega$ (V-) + 0.125V < Vout < (V+) - 0.125V	95	104		dB
4.01		T _A = -40°C to +125°C	85			dB
AOL		$Vs = 5V, R_L = 100kΩ$ (V-) + 25mV < Vout < (V+) - 25mV	96	105		dB
		T _A = -40°C to +125°C	85	25 125 150 1 3.5 3 1 1 1 88 72 104 105 18 25 25 100 125 125 1eristics 40 6.5 1 1.5	dB	
Output 0	Characteristics					
		$R_L = 100 K\Omega$		18	25	mV
M	Output Valtage Suring from Dail	T _A = -40°C to +125°C			25	mV
V_{OUT}	Output Voltage Swing from Rail	$R_L = 5K\Omega$		100	125	mV
		T _A = -40°C to +125°C			125	mV
lout	Output Current	See Typica	al Characterist	ics		•
R _{OUT}	Open-Loop Output Impedance	f = 1MHz, I _O = 0mA		40		Ω
Dynamic	Performance					
GBW	Gain Bandwidth Product			6.5		MHz
	Settling Time to 0.1%	V _{OUT} = 2V step, G = +1		1		μs
t _S	Settling Time to 0.01%	V _{OUT} = 2V step, G = +1		1.5		μs
	Overload Recovery Time	Vin * Gain > Vs		0.2		μs
SR	Slew Rate	G = +1		5		V/µs
THD+N	Total Harmonic Distortion+ Noise	V _S = 5V, Vo = 3Vpp, G = +1, f = 1kHz		0.001		%

ELECTRICAL CHARACTERISTICS: V_S = +2.7V to +5.5V


Boldface limits apply over the specified temperature range, $T_A = -40$ °C to +125°C.

Parameter		Operating Conditions	Min	Туре	Max	Unit				
Noise	Noise Performance									
V _{noise}	Input Voltage Noise	f = 0.1Hz to 10Hz		5		μVpp				
e _n	Input Voltage Noise Density	f = 10kHz		15		nV/√Hz				
i _n	Input Current Noise Density	f = 10kHz		4		fA/√Hz				
Tempe	erature Range									
	Specified Range		-40		+125	°C				
	Operating Range		-55		+150	°C				
θ_{JA}	Storage Range		-65		+150	°C				
	Thermal Resistance									
	TSSOP8			100		°C/W				


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION NOTES

The TS2192EN and TS2192A families of op amps are suitable for a wide range of general-purpose applications. They provide Rail-to-rail input and output. Excellent ac performance makes them well-suited for audio and sensor applications. The input common-mode voltage range includes both rails, allowing the TS2192EN and TS2192A families op amps to be used in bipolar and unipolar application.

Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications.

Power-supply pins should be bypassed with $0.1 \mu F$ ceramic capacitors.

POWER SUPPLY

The TS2192EN and TS2192A families operate from a single +2.5V to +5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For single supply operation, bypass the power supply +VS with a 0.1μ F capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors. 2.2μ F tantalum capacitor can be added for better performance.

The TS2192EN and TS2192A families are ideal for battery-powered instrumentation and handheld devices because it can operate at the end of discharge voltage of most popular batteries.

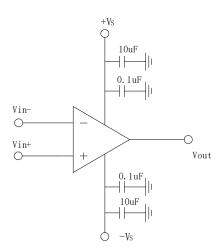


Figure 1. Amplifier with Bypass Capacitors

DRIVING CAPACITIVE LOADS

The TS2192EN and TS2192A families can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and

this result in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 2. The isolation resistor $R_{\rm ISO}$ and the load capacitor CL form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

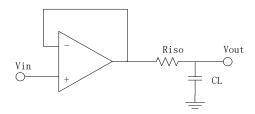


Figure 2. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown in Figure 3. It provides DC accuracy as well as AC stability. Rf provides the DC accuracy by connecting the inverting signal with the output. Cf and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

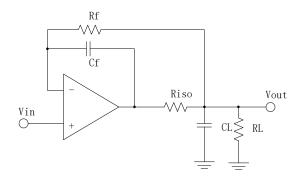


Figure 3. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

TYPICAL APPLICATION

Difference Amplifier

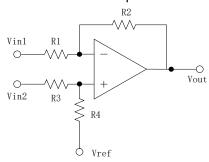


Figure 4. Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal (R4 / R3 = R2 / R1) then $Vout = (Vin2 - Vin1) \times R2 / R1 + Vref$.

Low Pass Active Filter

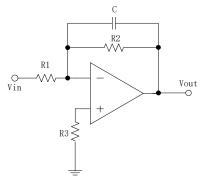


Figure 5. Low Pass Active Filter

The low pass filter shown in Figure 5 has a DC gain of (-R2 / R1) and the -3 dB corner frequency is $1/2\pi R2C.$ Make sure the filter within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

Instrumentation Amplifier

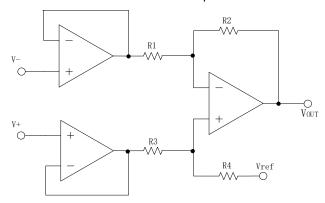
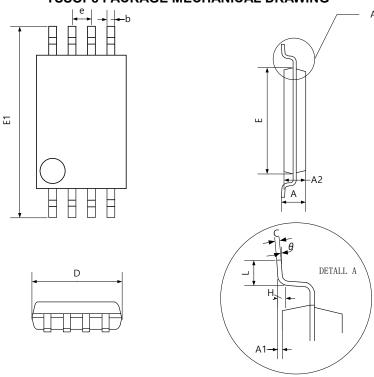
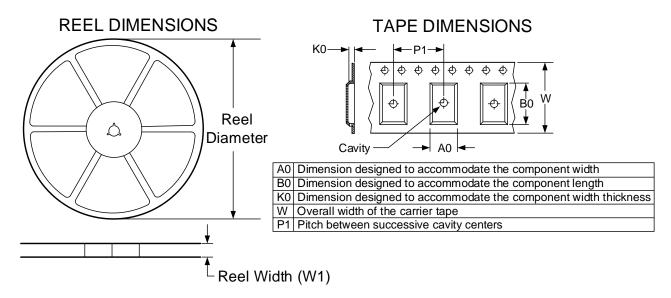
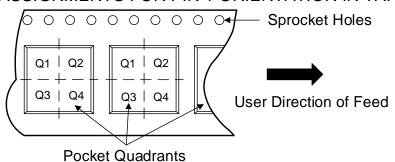



Figure 6. Instrumentation Amplifier

The circuit in Figure 6 performs the same function as that in Figure 4 but with the high input impedance.

MECHANICAL DIMENSIONS




TSSOP8 PACKAGE MECHANICAL DATA

	dimensions							
symbol	millin	neters	inches					
	min	max	min	max				
D	2.900	3.100	0.114	0.122				
E	4.300	4.500	0.169	0.177				
b	0.190	0.300	0.007	0.012				
С	0.090	0.200	0.004	0.008				
E1	6.250	6.550	0.246	0.258				
Α		1.200		0.047				
A2	0.800	1.000	0.031	0.039				
A1	0.050	0.150	0.002	0.006				
е	0.0	650	0.026					
L	0.500	0.700	0.020	0.028				
Н	0.2	0.250)10				
θ	1º	7 °	1º	7 °				

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS2292ATSSOP8R	TSSOP8	8	4000	330.0	12.4	6.4	5.4	2.1	8.0	12.0	Q1

CONTACT INFORMATION

Trusignal Microelectronics

Phone: +86 512-65923982 **Fax:** +86 512-65923995

Email: support@kunyuanic.com; sales@kunyuanic.com;